Efficiency of monolaurin in mitigating ruminal methanogenesis and modifying C-isotope fractionation when incubating diets composed of either C3or C4plants in a rumen simulation technique (Rusitec) system

Author:

Klevenhusen Fenja,Bernasconi Stefano M.,Hofstetter Thomas B.,Bolotin Jakov,Kunz Carmen,Soliva Carla R.

Abstract

Mitigation of methanogenesis in ruminants has been an important goal for several decades. Free lauric acid, known to suppress ruminal methanogenesis, has a low palatability; therefore, in the present study the aim was to evaluate the mitigation efficacy of its esterified form (monolaurin). Further,13C-isotope abundance (δ13C) and13C–12C fractionation during methanogenesis and fermentation were determined to evaluate possible microbial C-isotope preferences. Using the rumen simulation technique, four basal diets, characterised either by the C3plants grass (hay) and wheat (straw and grain), or the C4plant (13C excess compared with C3plants) maize (straw and grain), and a mixture of the latter two, were incubated with and without monolaurin (50 g/kg dietary DM). Added to hay, monolaurin did not significantly affect methanogenesis. When added to the other diets (P < 0·05 for the wheat-based diet) methane formation was lowered. Monolaurin decreased fibre disappearance (least effect with the hay diet), acetate:propionate ratio, and protozoal counts. Feed residues and SCFA showed the same δ13C as the diets. Methane was depleted in13C while CO2was enriched in13C compared with the diets. Monolaurin addition resulted in13C depletion of CO2and enrichment in CH4(the latter only in the hay diet). In conclusion, monolaurin proved to effectively decrease methanogenesis in the straw–grain diets although this effect might partly be explained by the concomitantly reduced fibre disappearance. The influence on13C-isotope abundance and fractionation supports the hypothesis that ruminal microbes seem to differentiate to some extent between C-isotopes during methanogenesis and fermentation.

Publisher

Cambridge University Press (CUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3