Skipping breakfast regimen induces an increase in body weight and a decrease in muscle weight with a shifted circadian rhythm in peripheral tissues of mice

Author:

Kiriyama Kohei,Yamamoto Mizuki,Kim Daeun,Sun Shumin,Yamamoto Hirotaka,Oda HiroakiORCID

Abstract

AbstractMeal timing is a key factor in synchronising the circadian clock in peripheral tissues. Circadian disorders are associated with the metabolic syndrome. Previously, we demonstrated that a skipping breakfast regimen (SBR) with a high-fat diet increased body weight gain in rats. In this study, we investigated whether SBR with a normal diet led to abnormal lipid metabolism and muscle metabolism in mice. Male C57BL/6 mice were fed during zeitgeber time (ZT) 12–24 in the control group and ZT 16–24 in the SBR group for 2 weeks. SBR mice showed increased body weight gain and perirenal adipose tissue weight. The plantar muscle weight was decreased in the SBR group compared with that in the control group. Furthermore, SBR delayed the circadian oscillations in clock gene expression in peripheral tissues, such as the liver, adipose tissue and muscle, as well as the oscillations in the expression of lipid metabolism-related genes in the liver and adipose tissue. These results suggest that skipping breakfast over a long period of time is associated with a risk of obesity, the metabolic syndrome and muscle loss, such as sarcopenia.

Publisher

Cambridge University Press (CUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

Reference61 articles.

1. Rev-erb-α regulates atrophy-related genes to control skeletal muscle mass

2. Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock;Dyar;Mol Metab,2013

3. Modulation of core body temperature and energy metabolism by amino acids

4. Circadian rhythm disruption is associated with an increased risk of sarcopenia: a nationwide population-based study in Korea

5. The role of circadian rhythms in muscular and osseous physiology and their regulation by nutrition and exercise;Aoyama;Front Neurosci,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3