Whole-body retention of α-linolenic acid and its apparent conversion to other n-3 PUFA in growing pigs are reduced with the duration of feeding α-linolenic acid

Author:

Martínez-Ramírez Héctor R.,Cant John P.,Shoveller Anna K.,Atkinson James L.,de Lange Cornelis F. M.

Abstract

In the present study, fifteen growing pigs were used to determine the whole-body oxidation, retention efficiency (RE) and apparent conversion (AC) of α-linolenic acid (18 : 3n-3) to n-3 highly unsaturated fatty acids (HUFA), including EPA (20 : 5n-3) and DHA (22 : 6n-3). The pigs were fed a diet containing 10 % flaxseed for 30 d. Whole-body fatty acid composition was determined at initial (27·7 (se 1·9) kg), intermediate (day 15; 39·2 (se 1·4) kg) and final (45·7 (se 2·2) kg) body weight. On day 12, four pigs were fed 10 mg/kg of uniformly labelled 13C-18 : 3n-3 (single-bolus dose) to determine the oxidation of 18 : 3n-3. Expired $$CO_{2} $$ samples were collected for 24 h thereafter. The whole-body content of n-3 PUFA increased linearly (P< 0·0001) with time; however, the content of 22 : 6n-3 exhibited a quadratic response (P< 0·01) with a peak occurring at 15 h. As a proportion of intake, the RE of 18 : 3n-3 tended to reduce with time (P= 0·098). The AC of ingested 18 : 3n-3 to the sum of n-3 HUFA was reduced with time (P< 0·05; 12·2 v. 7·53 % for days 0–15 and days 15–30, respectively). The AC of 18 : 3n-3 to 20 : 5n-3 or 22 : 6n-3 was lower than that to 20 : 3n-3, both for days 0–15 (P< 0·05; 1·14 or 1·07 v. 7·06 %) and for days 15–30 (P< 0·05; 1·51 or 0·33 v. 4·29 %). The direct oxidation of 18 : 3n-3 was 7·91 (se 0·98) % and was similar to the calculated disappearance of 18 : 3n-3 between days 0 and 30 (8·81 (se 5·24) %). The oxidation of 18 : 3n-3 was much lower than that reported in other species. The AC of 18 : 3n-3 to n-3 HUFA was reduced over time and that to 20 : 3n-3 in the present study was much higher than that reported in other species and should be explored further.

Publisher

Cambridge University Press (CUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3