Renal molecular mechanisms underlying altered Na+ handling and genesis of hypertension during adulthood in prenatally undernourished rats

Author:

Vieira-Filho Leucio D.,Cabral Edjair V.,Farias Juliane S.,Silva Paulo A.,Muzi-Filho Humberto,Vieyra Adalberto,Paixão Ana D. O.

Abstract

In the present study, we investigated the development of hypertension in prenatally undernourished adult rats, including the mechanisms that culminate in dysfunctions of molecular signalling in the kidney. Dams were fed a low-protein multideficient diet throughout gestation with or without α-tocopherol during lactation. The time course of hypertension development followed in male offspring was correlated with alterations in proximal tubule Na+-ATPase activity, expression of angiotensin II (Ang II) receptors, and activity of protein kinases C and A. After the establishment of hypertension, Ang II levels, cyclo-oxygenase 2 (COX-2) and NADPH oxidase subunit expression, lipid peroxidation and macrophage infiltration were examined in renal tissue. Lipid peroxidation in undernourished rats, which was very intense at 60 d, decreased at 90 d and returned to control values by 150 d. During the prehypertensive phase, prenatally undernourished rats exhibited elevated renal Na+-ATPase activity, type 2 Ang II receptor down-regulation and altered protein kinase A:protein kinase C ratio. Stable late hypertension coexisted with highly elevated levels of Ang II-positive cells in the cortical tubulointerstitium, enhanced increase in the expression of p47phox (NADPH oxidase regulatory subunit), marked down-regulation of COX-2 expression, expanded plasma volume and decreased creatinine clearance. These alterations were reduced when the dams were given α-tocopherol during lactation. The offspring of well-nourished dams treated with α-tocopherol exhibited most of the alterations encountered in the offspring of undernourished dams not treated with α-tocopherol. Thus, alterations in proximal tubule Na+ transport, subcellular signalling pathways and reactive oxygen species handling in renal tissue underpin the development of hypertension.

Publisher

Cambridge University Press (CUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3