Feeding of a deep-fried fat causes PPARα activation in the liver of pigs as a non-proliferating species

Author:

Luci Sebastian,König Bettina,Giemsa Beatrice,Huber Stefanie,Hause Gerd,Kluge Holger,Stangl Gabriele I.,Eder Klaus

Abstract

Recent studies have shown that dietary oxidised fats influence the lipid metabolism in rats by activation of PPARα. In this study, we investigated whether a mildly oxidised fat causes activation of PPARα in pigs which are non-proliferators like man. Eighteen pigs were assigned to two groups and received either a diet containing 90 g/kg of a fresh fat or the same diet with 90 g/kg of an oxidised fat prepared by heating for 24 h at 180°C in a deep fryer. Pigs fed the oxidised fat had a higher peroxisome count, a higher activity of catalase and a higher mRNA concentration of mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase in the liver and a higher concentration of 3-hydroxybutyrate in plasma than pigs fed the fresh fat (P < 0·05). Hepatic mRNA concentrations of acyl-CoA oxidase and carnitine palmitoyltransferase-1 tended to be increased in pigs fed the oxidised fat compared to pigs fed the fresh fat (P < 0·10). Pigs fed the oxidised fat, moreover, had higher mRNA concentrations of sterol regulatory element-binding protein (SREBP)-1 and its target genes acetyl-CoA carboxylase and stearoyl-CoA desaturase in the liver and higher mRNA concentrations of SREBP-2 and its target genes 3-hydroxy-3-methylglutary-CoA reductase and LDL receptor in liver and small intestine. In conclusion, this study shows that even a mildly oxidised fat causes activation of PPARα in the liver of pigs. Up-regulation of SREBP and its target genes in liver and small intestine suggests that the oxidised fat could stimulate synthesis of cholesterol and TAG in these tissues.

Publisher

Cambridge University Press (CUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3