Vitamin A deficiency suppresses fish immune function with differences in different intestinal segments: the role of transcriptional factorNF-κBandp38 mitogen-activated protein kinasesignalling pathways

Author:

Zhang Li,Feng Lin,Jiang Wei-Dan,Liu Yang,Wu Pei,Kuang Sheng-Yao,Tang Ling,Tang Wu-Neng,Zhang Yong-An,Zhou Xiao-Qiu

Abstract

AbstractThe present study investigated the effects of dietary vitamin A on immune function in the proximal intestine (PI), mid intestine (MI) and distal intestine (DI) of young grass carp (Ctenopharyngodon idella). Fish were fed graded levels of dietary vitamin A for 10 weeks, and then a challenge test using an injection ofAeromonas hydrophilawas conducted for 14 d. The results showed that, compared with the optimum vitamin A level, vitamin A deficiency significantly decreased fish growth performance, increased enteritis morbidity, decreased intestinal innate humoral immune response and aggravated intestinal inflammation. However, liver-expressed antimicrobial peptide 2A/B mRNA in the DI andIL-6,IL-17D,IL-10, transforming growth factor (TGF)-β1andTGF-β2mRNA in the PI were not affected by vitamin A levels. Meanwhile, vitamin A deficiency disturbed inflammatory cytokines in the PI, MI and DI, which might be partly linked to p38 mitogen-activated protein kinase (p38MAPK) signalling andNF-κBcanonical signalling pathway (IκB kinaseβ(IKKβ),IKKγ, inhibitor ofκBα,NF-κB p65andc-Rel) rather thanNF-κBnon-canonical signalling pathway (NF-κB p52andIKKα). However, the signalling moleculesNF-κB p65andp38MAPKdid not participate in regulating cytokines in the PI. These results suggested that vitamin A deficiency decreased fish growth and impaired intestinal immune function, and that different immune responses in the PI, MI and DI were mediated partly byNF-κBcanonical signalling andp38MAPKsignalling pathways. On the basis of percentage of weight gain, to protect fish against enteritis morbidity and acid phosphatase activity, the optimum dietary vitamin A levels were estimated to be 0·664, 0·707 and 0·722 mg /kg, respectively.

Publisher

Cambridge University Press (CUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3