Citrulline decreases hepatic endotoxin-induced injury in fructose-induced non-alcoholic liver disease: anex vivostudy in the isolated perfused rat liver

Author:

Ouelaa Wassila,Jegatheesan Prasanthi,M’bouyou-Boungou Japhète,Vicente Christelle,Nakib Samir,Nubret Esther,De Bandt Jean-Pascal

Abstract

AbstractSteatosis can sensitise the liver to various challenges and favour the development of non-alcoholic fatty liver disease (NAFLD). In this context, fructose feeding promotes endotoxin translocation from the gut, contributing to disease progression via an inflammatory process. Citrulline is protective against fructose-induced NAFLD; we hypothesised that this property might be related to its anti-inflammatory and antioxidative action against endotoxin-induced hepatic injuries. This hypothesis was evaluated in a model of perfused liver isolated from NAFLD rats. Male Sprague–Dawley rats (n30) were fed either a standard rodent chow or a 60 % fructose diet alone, or supplemented with citrulline (1 g/kg per d) for 4 weeks. After an evaluation of their metabolic status, fasted rats received an intraperitoneal injection of lipopolysaccharide (LPS) (2·5 mg/kg). After 1 h, the livers were isolated and perfused for 1 h to study liver function and metabolism, inflammation and oxidative status.In vivo, citrulline significantly decreased dyslipidaemia induced by a high-fructose diet and insulin resistance. In the isolated perfused rat livers, endotoxaemia resulted in higher cytolysis (alanine aminotransferase release) and higher inflammation (Toll-like receptor 4) in livers of fructose-fed rats, and it was prevented by citrulline supplementation. Oxidative stress and antioxidative defences were similar in all three groups. Amino acid exchanges and metabolism (ammonia and urea release) were only slightly different between the three groups. In this context of mild steatosis, our results suggest that fructose-induced NAFLD leads to an increased hepatic sensitivity to LPS-induced inflammation. Citrulline-induced restriction of the inflammatory process may thus contribute to the prevention of NAFLD.

Publisher

Cambridge University Press (CUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3