Tomato and lemon extracts synergistically improve cognitive function by increasing brain-derived neurotrophic factor levels in aged mice

Author:

Yoon Kyeong-No,Cui Yidan,Quan Qing-Ling,Lee Dong Hun,Oh Jang-HeeORCID,Chung Jin Ho

Abstract

Abstract Brain ageing, the primary risk factor for cognitive impairment, occurs because of the accumulation of age-related neuropathologies. Identifying effective nutrients that increase cognitive function may help maintain brain health. Tomatoes and lemons have various bioactive functions and exert protective effects against oxidative stress, ageing and cancer. Moreover, they have been shown to enhance cognitive function. In the present study, we aimed to investigate the effects of tomato and lemon ethanolic extracts (TEE and LEE, respectively) and their possible synergistic effects on the enhancement of cognitive function and neurogenesis in aged mice. The molecular mechanisms underlying the synergistic effect of TEE and LEE were investigated. For the in vivo experiment, TEE, LEE or their mixture was orally administered to 12-month-old mice for 9 weeks. A single administration of either TEE or LEE improved cognitive function and neurogenesis in aged mice to some extent, as determined using the novel object recognition test and doublecortin immunohistochemical staining, respectively. However, a significant enhancement of cognitive function and neurogenesis in aged mice was observed after the administration of the TEE + LEE mixture, which had a synergistic effect. N-methyl-d-aspartate receptor 2B, postsynaptic density protein 95, and brain-derived neurotrophic factor (BDNF) levels and tropomyosin receptor kinase B (TrkB)/extracellular signal-regulated kinase (ERK) phosphorylation also synergistically increased after the administration of the mixture compared with those in the individual treatments. In conclusion, compared with their separate treatments, treatment with the TEE + LEE mixture synergistically improved the cognitive function, neurogenesis and synaptic plasticity in aged mice via the BDNF/TrkB/ERK signalling pathway.

Publisher

Cambridge University Press (CUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3