FORCING AXIOMS AND THE DEFINABILITY OF THE NONSTATIONARY IDEAL ON THE FIRST UNCOUNTABLE

Author:

HOFFELNER STEFANORCID,LARSON PAUL,SCHINDLER RALF,WU LIUZHEN

Abstract

Abstract We show that under $\mathsf {BMM}$ and “there exists a Woodin cardinal, $"$ the nonstationary ideal on $\omega _1$ cannot be defined by a $\Pi _1$ formula with parameter $A \subset \omega _1$ . We show that the same conclusion holds under the assumption of Woodin’s $(\ast )$ -axiom. We further show that there are universes where $\mathsf {BPFA}$ holds and $\text {NS}_{\omega _1}$ is $\Pi _1(\{\omega _1\})$ -definable. Lastly we show that if the canonical inner model with one Woodin cardinal $M_1$ exists, there is a generic extension of $M_1$ in which $\text {NS}_{\omega _1}$ is saturated and $\Pi _1(\{ \omega _1\} )$ -definable, and $\mathsf {MA_{\omega _1}}$ holds.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Reference19 articles.

1. On iterating semiproper preorders;Miyamoto;this Journal,2002

2. The bounded proper forcing axiom and well orderings of the reals

3. The bounded proper forcing axiom;Goldstern;this Journal,1995

4. Forcing over Models of Determinacy

5. ${\varSigma}_1(\kappa)$ -definable subsets of $H({\kappa}^{+})$;Lücke;this Journal,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3