Abstract
Abstract
We obtain, for the first time, a modular many-valued semantics for combined logics, which is built directly from many-valued semantics for the logics being combined, by means of suitable universal operations over partial non-deterministic logical matrices. Our constructions preserve finite-valuedness in the context of multiple-conclusion logics, whereas, unsurprisingly, it may be lost in the context of single-conclusion logics. Besides illustrating our constructions over a wide range of examples, we also develop concrete applications of our semantic characterizations, namely regarding the semantics of strengthening a given many-valued logic with additional axioms, the study of conditions under which a given logic may be seen as a combination of simpler syntactically defined fragments whose calculi can be obtained independently and put together to form a calculus for the whole logic, and also general conditions for decidability to be preserved by the combination mechanism.
Publisher
Cambridge University Press (CUP)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献