Design framework for programmable mechanical metamaterial with unconventional damping properties under dynamic loading conditions

Author:

Kaal WilliamORCID,Becker Michael M.,Specht Marius,Fischer Sarah C.L.ORCID

Abstract

AbstractA theoretical and experimental framework for novel metamaterial with programmable damping properties is presented. This material system is able to switch between elastic-dominated and damping-dominated regimes with different overall stiffness under dynamic loading depending on the external stimulus. The unit cell combines an auxetic and a bellow-like layer separated by an interface through which the amount of media flow can be tuned depending on the lateral strain. A simplified analytical model is derived to analyse the programmable damping effect. The model is further extended with a fluid-dynamics approach to link the effective damping properties with geometrical parameters to aid with the practical design of the metamaterial. Afterward, experiments are conducted on a macroscopic level using laser-sintered unit cells to validate the functionality of the concept both with air and water as media within the unit cells. To conclude the work, initial results on microscopic-level unit cells fabricated by two-photon lithography are introduced to showcase the scalability of the concept. This work provides an experimentally validated theoretical framework for future investigations to design unit cells with programmable damping on different length scales for applications requiring tailored dynamic energy dissipation.

Funder

Fraunhofer-Gesellschaft

Publisher

Cambridge University Press (CUP)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3