Some Aspects of Asymptotic Theory with Applications to Time Series Models

Author:

Jeganathan P.

Abstract

The primary purpose of this paper is to review a very few results on some basic elements of large sample theory in a restricted structural framework, as described in detail in the recent book by LeCam and Yang (1990, Asymptotics in Statistics: Some Basic Concepts. New York: Springer), and to illustrate how the asymptotic inference problems associated with a wide variety of time series regression models fit into such a structural framework. The models illustrated include many linear time series models, including cointegrated models and autoregressive models with unit roots that are of wide current interest. The general treatment also includes nonlinear models, including what have become known as ARCH models. The possibility of replacing the density of the error variables of such models by an estimate of it (adaptive estimation) based on the observations is also considered.Under the framework in which the asymptotic problems are treated, only the approximating structure of the likelihood ratios of the observations, together with auxiliary estimates of the parameters, will be required. Such approximating structures are available under quite general assumptions, such as that the Fisher information of the common density of the error variables is finite and nonsingular, and the more specific assumptions, such as Gaussianity, are not required. In addition, the construction and the form of inference procedures will not involve any additional complications in the non-Gaussian situations because the approximating quadratic structure actually will reduce the problems to the situations similar to those involved in the Gaussian cases.

Publisher

Cambridge University Press (CUP)

Subject

Economics and Econometrics,Social Sciences (miscellaneous)

Cited by 145 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Semiparametrically optimal cointegration test;Journal of Econometrics;2024-06

2. Optimal stable Ornstein–Uhlenbeck regression;Japanese Journal of Statistics and Data Science;2023-03-13

3. Semiparametrically Optimal Cointegration Test;SSRN Electronic Journal;2023

4. Likelihood Ratio Processes under Nonstandard Settings;Theory of Probability & Its Applications;2022-08

5. LOCAL ASYMPTOTIC NORMALITY OF GENERAL CONDITIONALLY HETEROSKEDASTIC AND SCORE-DRIVEN TIME-SERIES MODELS;Econometric Theory;2022-03-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3