Abstract
Regularized quantile regression (QR) is a useful technique for analyzing heterogeneous data under potentially heavy-tailed error contamination in high dimensions. This paper provides a new analysis of the estimation/prediction error bounds of the global solution of
$L_1$
-regularized QR (QR-LASSO) and the local solutions of nonconvex regularized QR (QR-NCP) when the number of covariates is greater than the sample size. Our results build upon and significantly generalize the earlier work in the literature. For certain heavy-tailed error distributions and a general class of design matrices, the least-squares-based LASSO cannot achieve the near-oracle rate derived under the normality assumption no matter the choice of the tuning parameter. In contrast, we establish that QR-LASSO achieves the near-oracle estimation error rate for a broad class of models under conditions weaker than those in the literature. For QR-NCP, we establish the novel results that all local optima within a feasible region have desirable estimation accuracy. Our analysis applies to not just the hard sparsity setting commonly used in the literature, but also to the soft sparsity setting which permits many small coefficients. Our approach relies on a unified characterization of the global/local solutions of regularized QR via subgradients using a generalized Karush–Kuhn–Tucker condition. The theory of the paper establishes a key property of the subdifferential of the quantile loss function in high dimensions, which is of independent interest for analyzing other high-dimensional nonsmooth problems.
Publisher
Cambridge University Press (CUP)
Subject
Economics and Econometrics,Social Sciences (miscellaneous)
Reference76 articles.
1. Quantile regression under memory constraint
2. Wang, L. (2019). L1 -regularized quantile regression with many regressors under lean assumptions. University of Minnesota Digital Conservancy. Available at https://hdl.handle.net/11299/202063.
3. Linton, O.B. & Whang, Y.-J. (2004). A quantilogram approach to evaluating directional predictability. Available at SSRN 485342.
4. Nonparametric estimation of conditional quantile functions in the presence of irrelevant covariates;Chen;Journal of Econometrics,2019a
5. L1-Norm Quantile Regression
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献