LARGE SAMPLE JUSTIFICATIONS FOR THE BAYESIAN EMPIRICAL LIKELIHOOD

Author:

Sueishi NaoyaORCID

Abstract

This study investigates the asymptotic properties of the Bayesian empirical likelihood (BEL), which uses the empirical likelihood as an alternative to a parametric likelihood for Bayesian inference. We establish two asymptotic equivalence results based on the Bernstein–von Mises (BvM) theorem by introducing a new formulation of the moment restriction model. First, the limiting posterior distribution of the BEL is the same as that of a parametric Bayesian method that uses the likelihood of a least favorable model of the moment restriction model. Second, the limiting posterior distribution is also the same as that of a semiparametric Bayesian method that places priors on both a finite-dimensional parameter of interest and an infinite-dimensional nuisance parameter. Because parametric and semiparametric Bayesian methods are legitimate Bayesian procedures, the equivalence results provide a large sample justification for the BEL as a Bayesian inference method. Moreover, the BvM theorem provides a frequentist justification for BEL posterior inference.

Publisher

Cambridge University Press (CUP)

Subject

Economics and Econometrics,Social Sciences (miscellaneous)

Reference55 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3