Abstract
We construct efficient estimators of the identifiable parameters in a regression model when the errors follow a stationary parametric ARCH(P) process. We do not assume a functional form for the conditional density of the errors, but do require that it be symmetric about zero. The estimators of the mean parameters are adaptive in the sense of Bickel [2]. The ARCH parameters are not jointly identifiable with the error density. We consider a reparameterization of the variance process and show that the identifiable parameters of this process are adaptively estimable.
Publisher
Cambridge University Press (CUP)
Subject
Economics and Econometrics,Social Sciences (miscellaneous)
Cited by
104 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献