ROBUSTIFIED EXPECTED MAXIMUM PRODUCTION FRONTIERS

Author:

Daouia Abdelaati,Florens Jean-Pierre,Simar Léopold

Abstract

The aim of this paper is to construct a robust nonparametric estimator for the production frontier. We study this problem under a regression model with one-sided errors, where the regression function defines the achievable maximum output, for a given level of inputs-usage, and the regression error defines the inefficiency term. The main tool is a concept of partial regression boundary defined as a special probability-weighted moment. This concept motivates a robustified unconditional alternative to the pioneering class of nonparametric conditional expected maximum production functions. We prove that both the resulting benchmark partial frontier and its estimator share the desirable monotonicity of the true full frontier. We derive the asymptotic properties of the partial and full frontier estimators, and unravel their behavior from a robustness theory point of view. We provide numerical illustrations and Monte Carlo evidence that the presented concept of unconditional expected maximum production functions is more efficient and reliable in filtering out noise than the original conditional version. The methodology is very easy and fast to implement. Its usefulness is discussed through two concrete datasets from the sector of Delivery Services, where outliers are likely to affect the traditional conditional approach.

Publisher

Cambridge University Press (CUP)

Subject

Economics and Econometrics,Social Sciences (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bayesian boundary trend filtering;Computational Statistics & Data Analysis;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3