ASYMPTOTICALLY EFFICIENT ESTIMATION OF WEIGHTED AVERAGE DERIVATIVES WITH AN INTERVAL CENSORED VARIABLE

Author:

Kaido Hiroaki

Abstract

This paper studies the identification and estimation of weighted average derivatives of conditional location functionals including conditional mean and conditional quantiles in settings where either the outcome variable or a regressor is interval-valued. Building on Manski and Tamer (2002, Econometrica 70(2), 519–546) who study nonparametric bounds for mean regression with interval data, we characterize the identified set of weighted average derivatives of regression functions. Since the weighted average derivatives do not rely on parametric specifications for the regression functions, the identified set is well-defined without any functional-form assumptions. Under general conditions, the identified set is compact and convex and hence admits characterization by its support function. Using this characterization, we derive the semiparametric efficiency bound of the support function when the outcome variable is interval-valued. Using mean regression as an example, we further demonstrate that the support function can be estimated in a regular manner by a computationally simple estimator and that the efficiency bound can be achieved.

Publisher

Cambridge University Press (CUP)

Subject

Economics and Econometrics,Social Sciences (miscellaneous)

Reference34 articles.

1. Semiparametric estimation of index coefficients;Powell;Econometrica,1989

2. Chandrasekhar, A. , Chernozhukov, V. , Molinari, F. , & Schrimpf, P. (2011) Inference for Best Linear Approximations to Set Identified Functions. Discussion paper, University of British Columbia.

3. Consistent estimation of scaled coefficients;Stoker;Econometrica,1986

4. A dual approach to inference for partially identified models;Kaido;Journal of Econometrics,2016

5. Inference for subvectors and other functions of partially identified parameters in moment inequality models;Bugni;Quantitative Economics,2016

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Debiased machine learning of set-identified linear models;Journal of Econometrics;2023-08

2. Local regression smoothers with set-valued outcome data;International Journal of Approximate Reasoning;2021-01

3. A NONPARAMETRIC TEST OF SIGNIFICANT VARIABLES IN GRADIENTS;Econometric Theory;2020-11-20

4. The two‐sample linear regression model with interval‐censored covariates;Journal of Applied Econometrics;2018-09-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3