Author:
Fang Fang,Yuan Chaoxia,Tian Wenling
Abstract
Theoretical results of frequentist model averaging mainly focus on asymptotic optimality and asymptotic distribution of the model averaging estimator. However, even for basic least squares model averaging, many theoretical problems have not been well addressed yet. This article discusses asymptotic properties of a class of least squares model averaging methods with nested candidate models that includes the Mallows model averaging (MMA) of Hansen (2007, Econometrica 75, 1175–1189) as a special case. Two scenarios are considered: (i) all candidate models are under-fitted; and (ii) the true model is included in the candidate models. We find that in the first scenario, the least squares model averaging method asymptotically assigns weight one to the largest candidate model and the resulting model averaging estimator is asymptotically normal. In the second scenario with a slightly special weight space, if the penalty factor in the weight selection criterion is diverging with certain order, the model averaging estimator is asymptotically optimal by putting weight one to the true model. However, MMA with fixed model dimensions is not asymptotically optimal since it puts nonnegligible weights to over-fitted models. The theoretical results are clearly summarized with their restrictions, and some critical implications are discussed. Monte Carlo simulations confirm our theoretical results.
Publisher
Cambridge University Press (CUP)
Subject
Economics and Econometrics,Social Sciences (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献