Author:
Hounyo Ulrich,Gonçalves Sílvia,Meddahi Nour
Abstract
The main contribution of this paper is to propose a bootstrap method for inference on integrated volatility based on the pre-averaging approach, where the pre-averaging is done over all possible overlapping blocks of consecutive observations. The overlapping nature of the pre-averaged returns implies that the leading martingale part in the pre-averaged returns arekn-dependent withkngrowing slowly with the sample sizen. This motivates the application of a blockwise bootstrap method. We show that the “blocks of blocks” bootstrap method is not valid when volatility is time-varying. The failure of the blocks of blocks bootstrap is due to the heterogeneity of the squared pre-averaged returns when volatility is stochastic. To preserve both the dependence and the heterogeneity of squared pre-averaged returns, we propose a novel procedure that combines the wild bootstrap with the blocks of blocks bootstrap. We provide a proof of the first order asymptotic validity of this method for percentile and percentile-tintervals. Our Monte Carlo simulations show that the wild blocks of blocks bootstrap improves the finite sample properties of the existing first order asymptotic theory. We use empirical work to illustrate its use in practice.
Publisher
Cambridge University Press (CUP)
Subject
Economics and Econometrics,Social Sciences (miscellaneous)
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献