ON EFFICIENCY GAINS FROM MULTIPLE INCOMPLETE SUBSAMPLES

Author:

Chaudhuri Saraswata

Abstract

Cost-effective survey methods such as multi(R)-phase sampling typically generate samples that are collections of monotonic subsamples, i.e., the variables observed for the units in subsample r are also observed for the units in subsample r + 1 for r = 1,…,R – 1. These subsamples represent subpopulations that can be systematically different if the selection of a unit in each phase of sampling depends on the observed variables for that unit from past phases. Our article is about optimally combining all the subsamples for the efficient estimation of a finite dimensional parameter defined by moment restrictions on a generic target population that is an arbitrary union of these subpopulations. Only the R-th subsample is assumed to contain all the variables that are arguments of the moment function. Semiparametric efficiency bounds for estimation are obtained under a unified framework, allowing for full generality of the selection on observables in the sampling design. Contribution of each subsample toward efficient estimation is analyzed; and this turns out to differ fundamentally from that in setups where the same collection of subsamples is instead generated unplanned by unknown sampling. Uniquely, our setup enables all the subsamples to contribute to the efficient estimation for all the target populations, which we show is not possible in other setups. Efficient estimation is standard. Simulation evidence of substantive efficiency gains from using all the subsamples is provided for all the targets.

Publisher

Cambridge University Press (CUP)

Subject

Economics and Econometrics,Social Sciences (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The chained difference-in-differences;Journal of Econometrics;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3