Author:
Wang Qiying,Phillips Peter C. B.
Abstract
Abstract
We study optimal bandwidth selection in nonparametric cointegrating regression where the regressor is a stochastic trend process driven by short or long memory innovations. Unlike stationary regression, the optimal bandwidth is found to be a random sequence which depends on the sojourn time of the process. All random sequences
$h_{n}$
that lie within a wide band of rates as the sample size
$n\rightarrow \infty $
have the property that local level and local linear kernel estimates are asymptotically normal, which enables inference and conveniently corresponds to limit theory in the stationary regression case. This finding reinforces the distinctive flexibility of data-based nonparametric regression procedures for nonstationary nonparametric regression. The present results are obtained under exogenous regressor conditions, which are restrictive but which enable flexible data-based methods of practical implementation in nonparametric predictive regressions within that environment.
Publisher
Cambridge University Press (CUP)
Subject
Economics and Econometrics,Social Sciences (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献