SHRINKAGE EFFICIENCY BOUNDS

Author:

Hansen Bruce E.

Abstract

This paper is an extension of Magnus (2002, Econometrics Journal 5, 225–236) to multiple dimensions. We consider estimation of a multivariate normal mean under sum of squared error loss. We construct the efficiency bound (the lowest achievable risk) for minimax shrinkage estimation in the class of minimax orthogonally invariate estimators satisfying the sufficient conditions of Efron and Morris (1976, Annals of Statistics 4, 11–21). This allows us to compare the regret of existing orthogonally invariate shrinkage estimators. We also construct a new shrinkage estimator which achieves substantially lower maximum regret than existing estimators.

Publisher

Cambridge University Press (CUP)

Subject

Economics and Econometrics,Social Sciences (miscellaneous)

Reference38 articles.

1. Lasso-type GMM estimator;Caner;Econometric Theory,2009

2. Automated estimation of vector error correction models;Liao;Econometric Theory,2014

3. Formulas and Theorems for the Special Functions of Mathematical Physics

4. Estimation with quadratic loss;James;Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability,1961

5. Estimation of the mean of a univariate normal distribution with known variance;Magnus;Econometrics Journal,2002

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Shrinkage efficiency bounds: An extension;Communications in Statistics - Theory and Methods;2023-02-15

2. Weak Versus Strong Dominance of Shrinkage Estimators;Journal of Quantitative Economics;2021-11-18

3. Asymptotic analysis of statistical decision rules in econometrics;Handbook of Econometrics;2020

4. Risk-Constrained Kelly Portfolios Under Alpha-Stable Laws;Computational Economics;2019-08-19

5. PMSE dominance of the positive-part shrinkage estimator in a regression model with proxy variables;Journal of Statistical Computation and Simulation;2018-06-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3