Abstract
This paper provides a systematic approach to semiparametric identification that is based on statistical information as a measure of its “quality.” Identification can be regular or irregular, depending on whether the Fisher information for the parameter is positive or zero, respectively. I first characterize these cases in models with densities linear in an infinite-dimensional parameter. I then introduce a novel “generalized Fisher information.” If positive, it implies (possibly irregular) identification when other conditions hold. If zero, it implies impossibility results on rates of estimation. Three examples illustrate the applicability of the general results. First, I consider the canonical example of average densities. Second, I show irregular identification of the median willingness to pay in contingent valuation studies. Finally, I study identification of the discount factor and average measures of risk aversion in a nonparametric Euler equation with nonparametric measurement error in consumption.
Publisher
Cambridge University Press (CUP)
Subject
Economics and Econometrics,Social Sciences (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献