NEYMAN’S C(α) TEST FOR UNOBSERVED HETEROGENEITY

Author:

Gu Jiaying

Abstract

A unified framework is proposed for tests of unobserved heterogeneity in parametric statistic models based on Neyman’s C(α) approach. Such tests are irregular in the sense that the first order derivative of the log likelihood with respect to the heterogeneity parameter is identically zero, and consequently the conventional Fisher information about the parameter is zero. Nevertheless, local asymptotic optimality of the C(α) tests can be established via LeCam’s differentiability in quadratic mean and the limit experiment approach. This leads to local alternatives of ordern−1/4. The scalar case result is already familiar from existing literature and we extend it to the multidimensional case. The new framework reveals that certain regularity conditions commonly employed in earlier developments are unnecessary, i.e. the symmetry or third moment condition imposed on the heterogeneity distribution. Additionally, the limit experiment for the multidimensional case suggests modifications on existing tests for slope heterogeneity in cross sectional and panel data models that lead to power improvement. Since the C(α) framework is not restricted to the parametric model and the test statistics do not depend on the particular choice of the heterogeneity distribution, it is useful for a broad range of applications for testing parametric heterogeneity.

Publisher

Cambridge University Press (CUP)

Subject

Economics and Econometrics,Social Sciences (miscellaneous)

Reference48 articles.

1. Turlach B. & Weignessel A. (2013) Functions to solve quadratic programming problems. R package version 1.5-5, 2013-04-17.

2. A size correction to the Lagrange multiplier test for heteroskedasticity

3. C(α) tests and their use;Neyman;Sankhyā: The Indian Journal of Statistics,1979

4. A modified likelihood ratio test for homogeneity in finite mixture models

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neyman's C(α) test for the shape parameter of the exponential power class;Journal of Statistical Computation and Simulation;2021-11-30

2. Efficient pseudo-Gaussian and rank-based detection of random regression coefficients;Journal of Nonparametric Statistics;2020-04-02

3. TESTING FOR HOMOGENEITY IN MIXTURE MODELS;Econometric Theory;2017-07-24

4. Unobserved Heterogeneity in Income Dynamics: An Empirical Bayes Perspective;Journal of Business & Economic Statistics;2017-01-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3