Abstract
Censored quantile regressions have received a great deal of attention in the literature. In a linear setup, recent research has found that an estimator based on the idea of “redistribution-of-mass” in Efron (1967, Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 4, pp. 831–853, University of California Press) has better numerical performance than other available methods. In this paper, this idea is combined with the local polynomial kernel smoothing for nonparametric quantile regression of censored data. We derive the uniform Bahadur representation for the estimator and, more importantly, give theoretical justification for its improved efficiency over existing estimation methods. We include an example to illustrate the usefulness of such a uniform representation in the context of sufficient dimension reduction in regression analysis. Finally, simulations are used to investigate the finite sample performance of the new estimator.
Publisher
Cambridge University Press (CUP)
Subject
Economics and Econometrics,Social Sciences (miscellaneous)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献