COINTEGRATION AND REPRESENTATION OF COINTEGRATED AUTOREGRESSIVE PROCESSES IN BANACH SPACES

Author:

Seo Won-Ki

Abstract

We extend the notion of cointegration for time series taking values in a potentially infinite dimensional Banach space. Examples of such time series include stochastic processes in $C[0,1]$ equipped with the supremum distance and those in a finite dimensional vector space equipped with a non-Euclidean distance. We then develop versions of the Granger–Johansen representation theorems for I(1) and I(2) autoregressive (AR) processes taking values in such a space. To achieve this goal, we first note that an AR(p) law of motion can be characterized by a linear operator pencil (an operator-valued map with certain properties) via the companion form representation, and then study the spectral properties of a linear operator pencil to obtain a necessary and sufficient condition for a given AR(p) law of motion to admit I(1) or I(2) solutions. These operator-theoretic results form a fundamental basis for our representation theorems. Furthermore, it is shown that our operator-theoretic approach is in fact a closely related extension of the conventional approach taken in a Euclidean space setting. Our theoretical results may be especially relevant in a recently growing literature on functional time series analysis in Banach spaces.

Publisher

Cambridge University Press (CUP)

Subject

Economics and Econometrics,Social Sciences (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3