Abstract
For many time series in empirical macro and finance, it is assumed that the logarithm of the series is a unit root process. Since we may want to assume a stable growth rate for the macroeconomics time series, it seems natural to potentially model such a series as a unit root process with drift. This assumption implies that the level of such a time series is the exponential of a unit root process with drift and therefore, it is of substantial interest to investigate analytically the behavior of the exponential of a unit root process with drift. This paper shows that the sum of the exponential of a random walk with drift converges in distribution, after rescaling by the exponential of the maximum value of the random walk process. A similar result was established in earlier work for unit root processes without drift. The results derived here suggest the conjecture that also in the case when the Dickey-Fuller test or the KPSS statistic is applied to the exponential of a unit root process with drift, these tests will asymptotically indicate stationarity.
Publisher
Cambridge University Press (CUP)
Subject
Economics and Econometrics,Social Sciences (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献