COINTEGRATING POLYNOMIAL REGRESSIONS: ROBUSTNESS OF FULLY MODIFIED OLS

Author:

Stypka Oliver,Wagner MartinORCID,Grabarczyk Peter,Kawka Rafael

Abstract

Cointegrating polynomial regressions (CPRs) include deterministic variables, integrated variables, and their powers as explanatory variables. Based on a novel kernel-weighted limit result and a novel functional central limit theorem, this paper shows that the fully modified ordinary least squares (FM-OLS) estimator of Phillips and Hansen (1990, Review of Economic Studies 57, 99–125) is robust to being used in CPRs. Being used in CPRs refers to a widespread empirical practice that treats the integrated variables and their powers, incorrectly, as a vector of integrated variables and uses textbook FM-OLS. Robustness means that this “formal” FM-OLS practice leads to a zero mean Gaussian mixture limiting distribution that coincides with the limiting distribution of the Wagner and Hong (2016, Econometric Theory 32, 1289–1315) application of the FM estimation principle to the CPR case. The only restriction for this result to hold is that all integrated variables to power one are included as regressors. Even though simulation results indicate performance advantages of the Wagner and Hong (2016, Econometric Theory 32, 1289–1315) estimator, partly even in large samples, the results of the paper give an asymptotic foundation to “formal” FM-OLS and thus enlarge the usability of the Phillips and Hansen (1990, Review of Economic Studies 57, 99–125) estimator implemented in many software packages.

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3