HETEROSKEDASTICITY ROBUST SPECIFICATION TESTING IN SPATIAL AUTOREGRESSION

Author:

Lee JungyoonORCID,Phillips Peter C. B.ORCID,Rossi FrancescaORCID

Abstract

Spatial autoregressive (SAR) and related models offer flexible yet parsimonious ways to model spatial and network interactions. SAR specifications typically rely on a particular parametric functional form and an exogenous choice of the so-called spatial weight matrix with only limited guidance from theory in making these specifications. Also, the choice of a SAR model over other alternatives, such as spatial Durbin (SD) or spatial lagged X (SLX) models, is often arbitrary, raising issues of potential specification error. To address such issues, this paper develops a new specification test within the SAR framework that can detect general forms of misspecification including that of the spatial weight matrix, the functional form and the model itself. The test is robust to the presence of heteroskedasticity of unknown form in the disturbances and the approach relates to the conditional moment test framework of Bierens ([1982, Journal of Econometrics 20, 105–134], [1990, Econometrica 58, 1443–1458]). The Bierens test is shown to be inconsistent in general against spatial alternatives and the new test introduces modifications to achieve test consistency in the spatial setting. A central element is the infinite-dimensional endogeneity induced by spatial linkages. This complexity is addressed by introducing a new component to the omnibus test that captures the effects of potential spatial matrix misspecification. With this modification, the approach leads to a simple pivotal test procedure with standard critical values that is the first test in the literature to have power against misspecifications in the spatial linkages. We derive the asymptotic distribution of the test under the null hypothesis of correct SAR specification and prove consistency. A Monte Carlo study is conducted to study its finite sample performance. An empirical illustration on the performance of the test in modeling tax competition in Finland is included.

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3