OPTIMAL AUXILIARY PRIORS AND REVERSIBLE JUMP PROPOSALS FOR A CLASS OF VARIABLE DIMENSION MODELS

Author:

Norets Andriy

Abstract

This article develops a Markov chain Monte Carlo (MCMC) method for a class of models that encompasses finite and countable mixtures of densities and mixtures of experts with a variable number of mixture components. The method is shown to maximize the expected probability of acceptance for cross-dimensional moves and to minimize the asymptotic variance of sample average estimators under certain restrictions. The method can be represented as a retrospective sampling algorithm with an optimal choice of auxiliary priors and as a reversible jump algorithm with optimal proposal distributions. The method is primarily motivated by and applied to a Bayesian nonparametric model for conditional densities based on mixtures of a variable number of experts. The mixture of experts model outperforms standard parametric and nonparametric alternatives in out of sample performance comparisons in an application to Engel curve estimation. The proposed MCMC algorithm makes estimation of this model practical.

Publisher

Cambridge University Press (CUP)

Subject

Economics and Econometrics,Social Sciences (miscellaneous)

Reference33 articles.

1. Interpretation and inference in mixture models: Simple mcmc works;Geweke;Computational Statistics and Data Analysis,2007

2. Hierarchical mixtures of experts and the EM algorithm;Jordan;Neural Computation,1994

3. Optimal Markov chain Monte Carlo sampling;Chen;Wiley Interdisciplinary Reviews: Computational Statistics,2013

4. Smoothly mixing regressions;Geweke;Journal of Econometrics,2007

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3