ON MOMENT CONDITIONS FOR QUASI-MAXIMUM LIKELIHOOD ESTIMATION OF MULTIVARIATE ARCH MODELS

Author:

Avarucci Marco,Beutner Eric,Zaffaroni Paolo

Abstract

This paper questions whether it is possible to derive consistency and asymptotic normality of the Gaussian quasi-maximum likelihood estimator (QMLE) for possibly the simplest multivariate GARCH model, namely, the multivariate ARCH(1) model of the Baba, Engle, Kraft, and Kroner form, under weak moment conditions similar to the univariate case. In contrast to the univariate specification, we show that the expectation of the log-likelihood function is unbounded, away from the true parameter value, if (and only if) the observable has unbounded second moment. Despite this nonstandard feature, consistency of the Gaussian QMLE is still warranted. The same moment condition proves to be necessary and sufficient for the stationarity of the score when evaluated at the true parameter value. This explains why high moment conditions, typically bounded sixth moment and above, have been used hitherto in the literature to establish the asymptotic normality of the QMLE in the multivariate framework.

Publisher

Cambridge University Press (CUP)

Subject

Economics and Econometrics,Social Sciences (miscellaneous)

Reference32 articles.

1. Asymptotic theory for multivariate GARCH processes;Comte;Journal of Multivariate Analysis,2003

2. On asymptotic theory for multivariate GARCH models;Hafner;Journal of Multivariate Analysis,2009

3. A capital asset pricing model with time varying covariances;Bollerslev;Journal of Political Economy,1988

4. Stationarity of GARCH processes and of some nonnegative time series;Bougerol;Journal of Econometrics,1992

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Autoregressive conditional betas;Journal of Econometrics;2024-01

2. Dynamic conditional eigenvalue GARCH;Journal of Econometrics;2021-10

3. CHARACTERIZATION OF THE TAIL BEHAVIOR OF A CLASS OF BEKK PROCESSES: A STOCHASTIC RECURRENCE EQUATION APPROACH;Econometric Theory;2021-02-04

4. Networks in risk spillovers: A multivariate GARCH perspective;Econometrics and Statistics;2021-01

5. References;GARCH Models;2019-03-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3