Author:
Dong Hao,Otsu Taisuke,Taylor Luke
Abstract
In this paper, we derive the asymptotic properties of the density-weighted average derivative estimator when a regressor is contaminated with classical measurement error and the density of this error must be estimated. Average derivatives of conditional mean functions are used extensively in economics and statistics, most notably in semiparametric index models. As well as ordinary smooth measurement error, we provide results for supersmooth error distributions. This is a particularly important class of error distribution as it includes the Gaussian density. We show that under either type of measurement error, despite using nonparametric deconvolution techniques and an estimated error characteristic function, we are able to achieve a
$\sqrt {n}$
-rate of convergence for the average derivative estimator. Interestingly, if the measurement error density is symmetric, the asymptotic variance of the average derivative estimator is the same irrespective of whether the error density is estimated or not. The promising finite sample performance of the estimator is shown through a Monte Carlo simulation.
Publisher
Cambridge University Press (CUP)
Subject
Economics and Econometrics,Social Sciences (miscellaneous)
Reference43 articles.
1. Econometric models: Their problems and usefulness: Pitfalls in financial model building;Brainard;American Economic Review,1968
2. Dong, H. & Otsu, T. (2018) Nonparametric Estimation of Additive Model with Errors-in-Variables, Working paper.
3. Semiparametric Regression for the Applied Econometrician
4. Estimation of a semiparametric varying-coefficient partially linear errors-in-variables model
5. Semiparametric estimation of censored selection models with a nonparametric selection mechanism
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献