Abstract
In a two-step extremum estimation (M-estimation) framework with a finite-dimensional parameter of interest and a potentially infinite-dimensional first-step nuisance parameter, this paper proposes an averaging estimator that combines a semiparametric estimator based on a nonparametric first step and a parametric estimator which imposes parametric restrictions on the first step. The averaging weight is an easy-to-compute sample analog of an infeasible optimal weight that minimizes the asymptotic quadratic risk. Under Stein-type conditions, the asymptotic lower bound of the truncated quadratic risk difference between the averaging estimator and the semiparametric estimator is strictly less than zero for a class of data generating processes that includes both correct specification and varied degrees of misspecification of the parametric restrictions, and the asymptotic upper bound is weakly less than zero. The averaging estimator, along with an easy-to-implement inference method, is demonstrated in an example.
Publisher
Cambridge University Press (CUP)
Subject
Economics and Econometrics,Social Sciences (miscellaneous)