The requirement for DNA repair in desiccation tolerance of germinating embryos

Author:

Boubriak Ivan,Kargiolaki Haroula,Lyne Linden,Osborne Daphne J.

Abstract

AbstractIt is proposed that desiccation tolerance in the embryo of seeds depends upon the capacity to repair damage to genomic DNA when the desiccated embryo is rehydrated. From a study of imbibed and hydrated embryos of rye (Secale cereale) and wild oat (Avena fatua) evidence is provided that it is neither the extent of water uptake by the cells, the ensuing stability of the DNA to desiccation, nor the onset of S-phase DNA synthesis in the first cell cycle of germination that determines whether the desiccated embryo will survive. It is shown that when α- and β-polymerases of DNA repair are inhibited by aphidicolin and dideoxythymidine-5'-triphosphate, respectively, a γ-irradiation-induced DNA fragmentation cannot be fully repaired. It is shown that in hydrated embryos, at a stage when desiccation tolerance is lost, embryo cells still repair irradiation-induced damage, but this repaired DNA is unstable to desiccation and cannot be rerepaired when water is again made available. The failure to re-repair on rehydration appears to be critical to embryo survival and successful germination.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3