Golgi-mediated Transport of Seed Storage Proteins

Author:

Robinson David G.,Hinz Giselbert

Abstract

AbstractThe great majority of seed proteins that are stored in the vacuole prior to desiccation are transported via the Golgi apparatus. In this organelle they are separated from other products of the secretory pathway. Evidence is accumulating that the mechanism for segregation of storage proteins is different from that of soluble proteins destined for lytic vacuoles: it rarely seems to require short targeting propeptides at the N- or C-terminus. Instead, the three-dimensional conformation of the protein appears to be a critical factor, leading to self-assembly into osmiophilic aggregates. Also unusual is that this process starts immediately after entry into the Golgi apparatus, i.e. at thecis-cisternae, rather than at thetrans-pole where acid hydrolases are packaged into clathrin-coated vesicles. Storage protein aggregates accumulate into so-called “dense” vesicles at the periphery of the cisternae and are transported towards thetrans-pole of the Golgi apparatus by cisternal progression. Before the dense vesicles are released, clathrin-coated vesicles form at their surface; however, the function of the latter remains the object of speculation. In other eukaryotes, delivery of Golgi-derived lumenal products to the vacuole does not occur directly, but via a pre-vacuolar compartment. There is evidence that this is also the case for plants, and in developing pea cotyledons the pre-vacuolar compartment takes the form of a large multivesicular body. Ultimately this appears to fusein totowith the protein storage vacuole.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3