Approaches to elucidate the basis of desiccation-tolerance in seeds

Author:

Kermode Allison R.

Abstract

AbstractPlants undergo a series of physiological, biochemical and molecular changes in response to adverse environmental conditions or stresses such as drought, low temperature or high salt. Several genes and their corresponding proteins have been described that may play a role in withstanding water-deficit-related stresses or full desiccation. In particular, sugars and late-embryogenesis-abundant (LEA) proteins have received the most attention. Plant responses to water-deficit and desiccation have been well-characterized at the molecular level; however, pinpointing the precise roles of the gene products in protecting cells under conditions of water deficit remains a challenging task. While few plants are capable of withstanding full desiccation, most seeds undergo this event as a pre-programmed and final stage in their development. These are the so-called ‘orthodox’ seeds. In contrast to seeds of orthodox species, those of recalcitrant species do not acquire desiccation tolerance during their development and are shed from the parent plant at relatively high water contents. The essential components of desiccation tolerance of seeds are likely to involve the ability to effect repair upon subsequent rehydration as well as the ability to accumulate protective substances that limit the amount of damage which otherwise would be caused by water loss. Studies have begun to examine whether the desiccation sensitivity of recalcitrant seeds is at least partially the result of an insufficient accumulation of LEA-type proteins, or whether other factors (including a lack of protective sugars) are more important. This review assesses some of these studies as well as recent research to understand gene and protein function using transgenic host plant systems.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3