Environmental control of dormancy in quinoa (Chenopodium quinoa) seeds: two potential genetic resources for pre-harvest sprouting tolerance

Author:

Ceccato Diana V.,Daniel Bertero H.,Batlla Diego

Abstract

AbstractPre-harvest sprouting (PHS) is a serious risk when adapting quinoa (Chenopodium quinoa) seed production to different temperate environments. Two quinoa accessions, ‘2-Want’ and ‘Chadmo’ were evaluated under field conditions in the Argentinean pampas over 2 years on five different sowing dates, to explore a range of climate conditions under which seed filling is manageable in this region. Both accessions exhibited dormancy during seed development and maturation under the conditions examined; however, dormancy expression was restricted to low temperatures in 2-Want, while seeds of Chadmo, originating from the humid island of Chiloe, southern Chile, expressed a high level of dormancy at all examined temperatures. Dormancy release was observed as a reduction in the lowest temperature permissible for seed germination, which broadened the optimal germination temperature window. Higher storage temperature increased the rate of dormancy release. The environment during seed development on the mother plant affected the levels and patterns of seed dormancy, with higher temperatures and longer photoperiods promoting dormancy. As dormancy was released before the next production period, the levels of dormancy observed in the accession would allow timely planting and uniform germination, while dormancy during seed maturation ensures the prevention of PHS. Chadmo showed deeper dormancy levels in all situations, compared with 2-Want, therefore greater PHS tolerance under various conditions in the pampas region can be expected for Chadmo, which makes this accession a better candidate to be included in adaptive breeding programmes for quinoa.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3