Germination and persistence in soil of the dimorphic diaspores of Atriplex centralasiatica

Author:

Zhang Rui,Wang Yan Rong,Baskin Jerry M.,Baskin Carol C.,Luo Kai,Hu Xiao Wen

Abstract

AbstractThe fruit plus accessory parts, and thus not only the fruit or seed, is the diaspore in some species of flowering plants. Atriplex centralasiatica, a summer annual salt-secreting cold-desert halophyte of central Asia that produces flat and humped diaspores, is such a species. The dispersal/germination units of this diaspore-heteromorphic species are fruits enclosed in persistent ‘bracteoles’. Germination of black and brown fruits (i.e. ‘bracteoles’ removed) of this species has been studied in some detail previously, but little attention has been given to the germination biology of the intact diaspores. The aim of this study was to compare the germination biology of the intact diaspores of A. centralasiatica, and their fates in the field during 12 months on the soil surface and buried at 5-cm depth. Fresh flat diaspores germinated to 42.7–51.3% in light (12-h photoperiod) and to 16.0–59.3% in constant dark, over a temperature range of 15–20/30°C, while no freshly matured humped diaspores did so under any temperature/light regime. Neither gibberellin (GA3) nor potassium nitrate (KNO3) had an effect on germination of either diaspore. Both diaspores readily imbibed water, and removal of ‘bracteoles’ released most of the dormancy. Thus, the ‘bracteoles’ are primarily responsible for diaspore dormancy in A. centralasiatica. Humped diaspores persisted for a longer period in the soil than flat ones. The germination requirements of intact natural dispersal/germination units of A. centralasiatica differ from those previously reported for fruits of this species.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3