Development of C-lignin with G/S-lignin and lipids in orchid seed coats – an unexpected diversity exposed by ATR-FT-IR spectroscopy

Author:

Barsberg S.T.,Lee Y.-I.,Rasmussen H.N.

Abstract

AbstractMembers of the orchid family occupy many germination niches, in terrestrial, epiphytic and epilithic environments. How orchid seeds attach to their substrate and survive after dispersal is largely unknown. C-lignin is a recently discovered specialized lignin, found in seed coats of some plants, including orchid species, but its functional and biological significance is obscure. We studied seed coat ontogenesis in three species (Neuwiedia veratrifolia, Cypripedium formosanum and Phalaenopsis aphrodite) that represent basal and advanced branches in orchid phylogeny and divergent life forms. From each species, controlled pollination yielded several stages of seed development, from which seed coats (testa) were isolated and analysed by ATR-FT-IR spectroscopy. The use of the ATR set-up ensured that the chemical information originated only from the integral outer seed surface layers. The FT-IR bands of C-lignin are presented here for the first time, and distinguished from bands of G/S-lignin. In the seed coats, C-lignin developed after G/S-lignin in N. veratrifolia and C. formosanum, while only G/S-lignin developed in P. aphrodite. We discuss C-lignin properties and possible function in relation to seed coat properties. The species differed with respect to sequence and amounts of deposition, not only of lignins but also lipids, resulting in differences in mature seed coat compositions. Thus we revealed an unexpected and marked diversity among orchids with respect to seed surface chemistry, with possible implications for seed and germination ecology.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3