Assimilate uptake and the regulation of seed development

Author:

Weber Hans,Heim Ute,Golombek Sabine,Borisjuk Ljudmilla,Wobus Ulrich

Abstract

AbstractSeed development is a series of events involving cell division, followed by cell differentiation and storage activity In legume cotyledons, cell differentiation starts in certain regions and gradually spreads to other parts, thereby building up developmental gradients The entire process appears to be subject to metabolic control The high hexose state of the premature legume embryo as controlled by seed coat-specific invertases favours cell division Differentiation is initiated when hexose decreases and sucrose increases Seed development occurs in a close interaction with seed metabolism and transport processes Movement of photoassimilates from the sieve tubes to the unloading region of the maternal seed tissue is symplasmic and controlled by plasmodesmal passage Sucrose uptake intoVicia fabacotyledons is mediated by a H+-sucrose symporter located in the outer epidermis which generates transfer cells Formation of the sucrose uptake system is induced during the early to mid-cotyledon stage by tissue contact with the maternal seed coat and is controlled by carbohydrate availability In contrast, a hexose transporter gene is also expressed in epidermal cells covering younger, mitotically active regions of the cotyledons The sucrose uptake system apparently generates the high sucrose state immediately preceding the storage phase Sucrose specifically induces storage-associated differentiation processes indicating a specific sucrose-dependent signalling pathway operating in maturing cotyledons Moreover, the mode of sucrose uptake — apoplasmic movement into the epidermal cells with subsequent symplasmic transfer to the storage parenchyma cells — appears to control coordinated cotyledon development Unlike sucrose, amino acid transport into legume cotyledons is passive during early development but at later stages when large amounts of storage proteins are synthesized an additional active uptake system is established to ensure a sufficient supply

Publisher

Cambridge University Press (CUP)

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3