Secondary dormancy induction and release inBromus tectorumseeds: the role of temperature, water potential and hydrothermal time

Author:

Hawkins K. K.,Allen P.S.,Meyer S.E.

Abstract

AbstractSeeds of the winter annualBromus tectorumlose primary dormancy in summer and are poised to germinate rapidly in the autumn. If rainfall is inadequate, seeds remain ungerminated and may enter secondary dormancy under winter conditions. We quantified conditions under which seeds enter secondary dormancy in the laboratory and field and also examined whether contrastingB. tectorumgenotypes responded differently to dormancy induction cues. The study also extends previous hydrothermal time models for primary dormancy loss and germination timing inB. tectorumby using similar models to account for induction and loss of secondary dormancy. Maximum secondary dormancy was achieved in the laboratory after 4 weeks at –1.0 MPa and 5°C. Seeds in the field became increasingly dormant through exposure to temperatures and water potentials in this range, confirming laboratory results. They were released from dormancy through secondary after-ripening the following summer. Different genotypes showed contrasting responses to dormancy induction cues in both laboratory and field. To examine secondary dormancy induction and release in the field in terms of hydrothermal time parameters, we first created a model that allowed mean base water potential (Ψb(50)) to vary while holding other hydrothermal time parameters constant, as in models for primary dormancy loss under dry conditions. The second model allowed all three model parameters to vary through time, to account for changes (e.g. hydrothermal time accumulation) that could occur simultaneously with dormancy induction in imbibed seeds. Shifts in Ψb(50) could explain most changes in dormancy status for seeds retrieved from the field, except during the short period prior to dormancy induction, when hydrothermal time was accumulating. This study illustrates that hydrothermal modelling, and specifically changes in Ψb(50), can be used to characterize secondary dormancy induction and loss inB. tectorum.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3