Subcritical crack propagation in glacial quarrying during subglacial water pressure variation

Author:

Li LinORCID,Huang Yipeng,Su Ningchuan

Abstract

AbstractGlacial quarrying stems from the fracturing of subglacial bedrock. Much evidence shows that subcritical crack propagation of bedrock is closely related to subglacial water pressure fluctuations. Here we employ a model that assesses the impact of subglacial water pressure fluctuation on cavity length and subcritical crack propagation, while analyzing the effect of a pre-existing crack location using a phase-field model (PFM). Our results indicate that the cavity length is reduced during diurnal fluctuations in water pressure. There are two patterns of subcritical crack propagation on the corner of the step. The first stems from a rapid drop in water pressure. The second occurs after the water pressure recovers from the fluctuation to the initial steady state. This pattern is a consequence of enhanced stress concentration on the step since the modeled cavity length exceeds its steady value and has higher efficiency in promoting subcritical crack propagation. Additionally, based on the PFM results, we speculate that the subcritical crack initiation and propagation happen on a broader scale, including the ice-bed contact region and its adjacent region. Our findings imply that the duration of subcritical crack propagation is short and typically ceases once the cavity length adjusts to reduced water pressure levels.

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

Reference41 articles.

1. A new laboratory device for study of subglacial processes: first results on ice–bed separation during sliding

2. Ice sheets matter for the global carbon cycle;Wadham;Nature Communications,2019

3. Glaciological and geological implications of basal-ice accretion in overdeepenings;Alley;Special Paper of the Geological Society of America,,1999

4. The creep of polycrystalline ice;Glen;Proceedings of the Royal Society of London Series A,1955

5. Positive feedbacks associated with erosion of glacial cirques and overdeepenings

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3