Up-glacier propagation of surface lowering of Yala Glacier, Langtang Valley, Nepal Himalaya

Author:

Sunako SojiroORCID,Fujita KojiORCID,Izumi Takeki,Yamaguchi SatoruORCID,Sakai AkikoORCID,Kayastha Rijan BhaktaORCID

Abstract

AbstractWe quantify the surface elevation changes along Yala Glacier in Langtang Valley, Nepal Himalaya, since 1981 using geodetic methods to understand the recent evolution and current state of small debris-free glaciers across the region. We analyse differential global positioning system measurements and aerial stereo imagery that were acquired along Yala Glacier in 2007, 2009, 2012 and 2015 to generate digital elevation models for each calculation period. Continuous surface lowering has mainly been observed across the down-glacier area during the calculation periods, although a large degree of variability exists, with this lowering trend propagating up-glacier in recent years. The area-weighted glacier mass balances range from −0.98 ± 0.27 to −0.26 ± 0.30 m w.e. a−1 for the five calculation periods (1981–2007, 2007–2009, 2009–2012, 2012–2015 and 2007–2015). These calculated mass-balance data reveal that Yala Glacier has undergone accelerated mass loss since the late 2000s, which is consistent with the results of previous in situ measurement and remote-sensing studies.

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3