From ice core to ground-penetrating radar: representativeness of SMB at three ice rises along the Princess Ragnhild Coast, East Antarctica

Author:

Cavitte Marie G.P.ORCID,Goosse Hugues,Wauthy Sarah,Kausch Thore,Tison Jean-Louis,Van Liefferinge BriceORCID,Pattyn FrankORCID,Lenaerts Jan T.M.ORCID,Claeys Philippe

Abstract

AbstractThe future contributions of the Antarctic Ice Sheet to sea level rise will depend on the evolution of its surface mass balance (SMB), which could amplify/dampen mass losses increasingly observed at the ice sheet's edge. In situ constraints of SMB over annual-to-decadal timescales consist mostly of firn/ice cores that have a surface footprint $\sim$cm$^{2}$. SMB constraints also come from climate models, which have a higher temporal resolution but a larger surface footprint of several km$^{2}$. We use ice-penetrating radar data to obtain an intermediate spatial and temporal resolution SMB record over three ice rises along the Princess Ragnhild Coast. The co-located ice cores allow us to obtain absolute radar-derived SMB rates at a multi-annual-to-decadal temporal resolution. By comparing the ice core SMB measurements and the radar-derived SMB records, we determine that pointwise measurements of SMB are representative of a small surface area, $\sim 200-500$ m radius extending from the ice core drill site for the ice rises studied here, and that the pointwise measurements are systematically 7–15 cm w.e. a$^{-1}$ lower than the mean SMB value calculated for the whole ice rises. However, ice core records are representative of an entire ice rise's temporal variability at the temporal resolution examined.

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3