Variability in the vertical temperature profile within crevasses at an alpine glacier

Author:

Purdie Heather,Zawar-Reza Peyman,Katurji Marwan,Schumacher Benjamin,Kerr Tim,Bealing Paul

Abstract

AbstractTasman Glacier, a temperate maritime glacier in the New Zealand Southern Alps, is rapidly receding. Climate warming is resulting in lengthening of the ablation season, meaning crevasses in the accumulation area are becoming exposed at the surface for longer. We combine measurements of air temperature and wind speed from inside crevasses with surface meteorological data, finding that during summer, in-crevasse air temperature is frequently positive, and can at times exceed surface air temperature. Greatest warming occurred in the widest crevasses during clear-sky conditions, but full depth warming of crevasses also occurred at night. Net shortwave radiation contributes to heating of air in the upper regions of crevasses, but turbulent sensible heat transfer was responsible for driving warm air deeper into crevasses. Crevasses orientated to maximise radiation retrieval, and running parallel to wind flow, have the greatest potential for warming and heat storage. We hypothesise a positive feedback loop in the surface energy-balance system, where crevasses entrain and trap heat, which enhances melting, that in turn enlarges the crevasses, enabling greater heat storage and further melting. Energy-balance models that treat accumulation areas of alpine glaciers as homogeneous surfaces will therefore underestimate snow melt and overestimate mass balance.

Funder

Royal Society Te Apārangi

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

Reference66 articles.

1. Radiation and ablation on the névé of Franz Josef Glacier;Kelliher;Journal of Hydrology (NZ),1996

2. Principles of Glacier Mechanics

3. Short-term estimates of surface energy transfers and ablation on the lower Franz Josef Glacier, South Westland, New Zealand;Marcus;New Zealand Journal of Geology and Geophysics,1985

4. Measuring glacier surface temperatures with ground-based thermal infrared imaging;Aubry-Wake;Geophysical Research Letters,2015

5. Willsman, A and Macara, G (2020) New Zealand glacier monitoring: end of summer snowline survey 2019, National Institute of Water & Atmospheric Research Ltd.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3