Glacier mass-balance estimates over High Mountain Asia from 2000 to 2021 based on ICESat-2 and NASADEM

Author:

Fan Yubin,Ke Chang-QingORCID,Zhou Xiaobing,Shen Xiaoyi,Yu Xuening,Lhakpa Drolma

Abstract

Abstract High Mountain Asia (HMA) glaciers are critical water reserves for montane regions, which are readily influenced by climate change. The glacier mass balance during 2000–2021 over HMA was estimated by comparing the elevations from ICESat-2 and the NASADEM. Radar penetration depth could be one of the intrinsic error sources in estimating glacier mass balance by using NASADEM. Therefore, we doubled elevation differences between the X-band Shuttle Radar Topography Missions (SRTMs) and NASADEM to estimate the potential error. The spatial characteristics of the altitude-dependent penetration depth can be detected in most sub-regions of HMA. Relatively deep penetrations in the Himalaya (2.3–3.7 m) and Hissar Alay (4.3 m) regions and small penetrations in the south-eastern HMA (1.0 m) were observed. The HMA region experienced a significant mass loss at a rate of −0.18 ± 0.12 m w.e. a−1, in which the Hengduan Shan exhibited the highest mass loss of −0.62 ± 0.10 m w.e. a−1, the West Kun Lun experienced a substantial mass gain of 0.23 ± 0.13 m w.e. a−1, and the Karakoram showed a more or less balance. Our results are in agreement with previous studies that assessed the mass balance of HMA glaciers from different methods.

Funder

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3