Abstract
Abstract
Glacier phototroph blooms on the surfaces of ice sheets and glaciers cause albedo reduction, leading to increased melting rates. We observed seasonal changes in the abundance of phototrophs on the Qaanaaq Ice Cap in northwestern Greenland from June to August 2014, and reproduced these changes using numerical and empirical models. The phototroph community on the ice surface mainly consisted of the glacier alga Ancylonema nordenskioldii and the cyanobacterium Phormidesmis priestleyi. The glacier alga appeared on the ice surface in late June, after which its abundance increased exponentially throughout the melting period. A logistic growth model designed for snow algal growth reproduced the measured exponential increases, suggesting that growth could be explained using the model as a function of the ice melting duration. Cyanobacteria appeared and their abundance increased in late July but did not change exponentially thereafter. The abundance of cyanobacteria was explained with an empirical model expressed as a function of the amount of mineral dust on the bare ice surface. Our numerical and empirical models for reproducing glacier algae and cyanobacteria could be useful for quantifying the albedo reduction caused by their growth and the melt rates of the Greenland ice sheet and glaciers in the future.
Funder
Ministry of Education, Culture, Sports, Science and Technology
Japan Society for the Promotion of Science
Publisher
Cambridge University Press (CUP)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献