On the disappearance of fine, disc-like features from thin foils of steel

Author:

Thompson S. W.

Abstract

Fine carbide particles form in quenched-and-aged specimens of iron containing a small amount of carbon. Similar precipitation occurs in ferrite grains within dual-phase steels. The particles have been described as discs or loops, typically about 20 run in diameter and 2 nm thick, which lie on ﹛100﹜ planes within ferrite grains. The precipitates are believed to form in association with vacancies and produce increases in hardness and yield strength. Two studies showed that these features disappeared after heating specimens in the transmission electron microscope (TEM), and this note reports further on this phenomenon.Continuously annealed and cold-rolled sheet steel (provided by Inland Steel Company) contained (in wt pet) 0.087 C, 0.97 Mn, 0.27 Si, 0.034 Al, 0.008 S, and 0.005 N. Specimens were intercritically annealed at 770°C for five minutes and quenched in iced water. Tensile testing was conducted within one day of heat treatment, and then specimens were stored at room temperature for about six months. Thin foils were produced by conventional thinning methods and jet polished at 75 V and 80 mA in an electrolyte containing 95% acetic acid and 5% perchloric acid. Specimens were examined in a Philips EM400 operated at 120 kV.

Publisher

Cambridge University Press (CUP)

Subject

General Medicine

Reference8 articles.

1. Aging susceptibility of retained and epitaxial ferrite in dual-phase steels

2. Precipitation and irradiation hardening in iron

3. Sponsored by the Metallurgy Program, Division of Materials Research, NSF. The assistance of R. A. McGrew with manuscript preparation is acknowledged.

4. Barber, D. W. M.S. Thesis Colorado School of Mines, Golden, CO (1988).

5. The quench-ageing of low-carbon iron and iron-manganese alloys an electron transmission study

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3