The Role of Temperature in Limiting Radiation Damage to Organic Materials in Electron Microscopes

Author:

Lamvik M.K.

Abstract

The intensity of the electron beam in an electron microscope is at once the basis for progress as well as the ultimate limitation in electron microscopy of organic materials. Gabor noted that the highest intensity available for light optics comes from sunlight, which produces an energy density of 2,000 watts/cm2-steradian. The electron sources in early microscopes could produce a million times that amount, and modern sources even more. While the high intensity made good images possible (because numerical apertures used for electron microscopes are less than 1% of the size used in light microscopy) early microscopists feared that such a high flux of charged particles would destroy most specimens, especially organic ones. Although it was soon found that biological specimens could survive observation by electron microscopy, the introduction of double-condenser illumination systems revealed the problem of specimen contamination. In time it became clear that radiation damage was more fundamental than the gross increases or decreases in specimen mass observed in contamination and etching.

Publisher

Cambridge University Press (CUP)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3