Author:
Alonso F.J. Martinez,Lobo M.V. Toledo,Martínez S. Rodriguez,Postigo F.M. Muñoz,Castro J.J. López-Fando
Abstract
The dominant mechanism that controls protein synthesis is the phosphorylation/dephosphorylation of initiation and elongation factors, with a translational control function. Each phase of protein synthesis is promoted by some of these factors that transiently interact with ribosomes, mRNAs and aminoacyltRNAs. Eukaryotic initiation factor-2 (eIF2, 130 kD) is one of these proteins and it is composed of three subunits: alpha, beta and gamma. eIF2 forms a ternary complex (GTP-eIF2-Met tRNAi) that can then interact with the 40S ribosomal subunit which in turn binds mRNA and the 60S ribosomal subunit to form the 80S initiation complex. The relation between eIF2 and the ribosomes is then a well established aspect of protein synthesis, but there are no previous studies about the distribution of eIF2 within the cell.Using immunocytochemical techniques, we show the distribution of eIF2 within the cell found in primary cultures of rat embryo brain neurons, in which eIF2 and eIF2-kinases have been identified. Primary culture neuron cells were grown in D15 and N2 mediums for 8 days.
Publisher
Cambridge University Press (CUP)